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UMBILICAL SUBMANIFOLDS OF
SASAKIAN SPACE FORMS

DAVID E. BLAIR & LIEVEN VANHECKE

1. The purpose of this note is to prove the following theorem:

Theorem. Let N*, n > 3, be an umbilical submanifold of a Sasakian space
Jorm M**X(c). If the mean curvature vector is parallel in the normal bundle, then
N™ is one of the following:

(i) N™is areal space form immersed as an integral submanifold of the con-
tact distribution, and N™ is totally geodesic when n = m.

(il) The characteristic vector field of the contact structure is tangent to N*,
N™ is totally geodesic and N* is a Sasakian space form with the same ¢-sectional
curvature.

(ili) ¢ = 1 and N™ is a real space form.

If the mean curvature vector is not parallel, then

(iv) N7 is an anti-invariant submanifold, and if N™ has constant mean cur-
vature, then ¢ < —3 and N™ admits a codimension 1 foliation by umbilical
submanifolds of type (i).

The four cases of the theorem do occur. In fact, the first three can occur in
the odd-dimensional sphere S***!(1); for example S*™*'(1) admits a great m-
sphere which is an integral submanifold of the usual contact structure [1] and
a codimension 2 great sphere such that the characteristic vector field is tan-
gent and the sphere inherits the contact structure of S*™*!. Sasakian submani-
folds of Sasakian manifolds have been studied quite extensively; see e.g. [2], [4].
In R*™*! with coordinates (x?, y?, z), the usual contact form » = 4(dz — J; y%dx?)
together with the Riemannian metric G = p @ 5 + £ >3 ((dx?) + (%)) is a
Sasakian structure with constant ¢-sectional curvature equal to — 3. The vector
fields 9/6y° span an integrable distribution whose leaves are integral submani-
folds of the contact distribution » = 0. Moreover these submanifolds are totally
geodesic (see e.g. [1]) and G restricted to these submanifolds is just the Eucli-
dean metric. Hence taking an (r — 1)-sphere >, (3¥)* = constant we have an
umbilical submanifold in R*™*'(—3). We devote § 5 to an example of type (iv).

2. Let M be a (2m + 1)-dimensional contact manifold with contact form 7,
i.e., p /A (dp)™ = 0. It is well known that a contact manifold admits a vector
field &, called the characteristic vector field, such that n(§) = 1 and dn(§, X) = 0.
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Moreover M admits a Riemannian metric G and a tensor field ¢ of type (1, 1)
such that

F=—-1+£6Q7, G(6X, YY) = G(X, ¥) — n(X)n(Y),
O(X, Y) o G(X, $Y) = dy(X, Y) .

We then say that (¢, &, 9, G) is a contact metric structure.
Let 7 denote the Riemannian connection of G. Then M is a normal contact
metric (Sasakian) manifold if

Vx9)Y = GX, V)& — ()X,
in which case we have
Vet = —gX.

A plane section of the tangent space T,,M at m ¢ M is called a ¢-section if it
is spanned by vectors X and ¢X orthogonal to &.

The sectional curvature K(X, $X) of a g-section is called a ¢-sectional cur-
vature. A Sasakian manifold is called a Sasakian space form, and denoted M(c)
if it has constant g-sectional curvature equal to ¢; in this case the curvature
transformation Ry = [ 5, Vy] — VEX,YJ is given by

RyyZ = e + DG, 2)X — G(X, 2)Y} + He — Dip(Xn(Z)Y
(2.1) — p(¥YM(2)X 4+ GX, Zy(Y)e— G(Y, Z)(X)§
+ O(Z, V)X — O(Z, X)§Y + 20(X, Y)$Z} .

Let ¢: N — M be an immersed submanifold, and g the induced metric. The
Gauss equation for the induced connection V' and the second fundamental
form o(X, ¥) is

Poxex¥ = 0,V xY + o(X, 7).

For simplicity we shall henceforth not distinguish notationally between X and
¢, X. Let R denote the curvature of V. Then the Gauss equation for the cur-
vature of N is

ERxyZ, W) = GRyyZ, W) + Glo(X, W), o(Y, Z)) — G(o(X, Z), o(Y, W) .

We denote by VL the connection in the normal bundle, and for the second
fundamental form ¢ we define the covariant derivative ‘¥ with respect to the
connection in the (tangent bundle) @ (normal bundle), by

(/VXO-)(Y’ Z) = VzlY-(O-(Y7 Z)) - G(VXY7 Z) - G(Y> VXZ) .
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Finally, the tangential and normal parts of a tensor field will be denoted by the
superscripts ¢ and | respectively.

For a contact manifold M it is well known that the (tangent) subbundle D
defined by » = 0 admits integral submanifolds up to and including dimension
7 but of no higher dimension. D is generally referred to as the contact distribu-
tion of the contact structure 7. A more general class of submanifolds than the
integral submanifolds of D are those which satisfy dy(X, ¥) = 0; these are
called anti-invariant submanifolds [3] since ¢ maps the tangent space into the
normal space.

3. We now consider an umbilical submanifold N with n» = dim N > 3 im-
mersed in a Sasakian space form M(c) of dimension 2m + 1. The second fun-
damental form ¢ is then given by o(X, Y) = g(X, Y)H where H is the mean
curvature vector and the Codazzi equation becomes

(RxyZ)t = (V3o)(Y, Z) — (Vyo)(X, Z) = g(¥, Z)WWiH — g(X, Z)V$H .

Since n > 3, for any X tangent to N we can choose a unit tangent vector field
Y such that Y is orthogonal to X and ¢X. Then .

(Ryy V) = I3H,
but from (2.1)
RypY = e + X + 3 ~ DGXOp(NY — p(YFX — p(X)§) ,
and hence
3.1 VeH = —4(c — Dy(X)&* .

Thus if H is parallel in the normal bundle, we have either (i) N is an integral
submanifold of the Sasakian space form, (ii) £ is tangent to N, or (iii) ¢ = 1.

Case (). From the Gauss equation we see that for an integral submanifold
of M(c) and an orthonormal pair {X, Y}

g(RXYY:- X) = %(C + 3) + #Z s

where 4 is the mean curvature, and hence that N is a real space form.
If ¢, and ¢, are normal vector fields, and A, and A4, the corresponding Wein-
garten maps, then the equation of Ricci-Kiihn is

G(Ryrly, 6) = G(REvE:, &) — (A, 41X, ) .
Since N is umbilical, {A4,, 4,] = 0 and since F-H = 0 we have
G(RyyH, $Y) = 0.

(2.1) then gives
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G(H, $Y)G($X, $Y) — G(H, $X)G($Y, $¥) =0 .
Choosing Y orthogonal to X, we have
GH,¢X)=0.

Thus either m > n or H is in the direction of £. But if N is not totally geodesic,
H cannot be in the direction of &, for if ¢(X, Y) = g(X, V)&, ¢ # 0, then

8, Ve =Gl 2Y,8) = —G(Y, V&) = G(Y,$X) = 0.

Therefore if m = n, N is totally geogesic.
Case (ii). If & is tangent to N, F.£ = O implies V.§ + H = 0 and hence
H = 0. Now since N is totally geodesic

—gX =V z& = Vx£,
that is, X is tangent to N. Setting ¢’ = |y,
X, Vg — p(N)X = Fxp)Y = VxpY — ¢V Y
= VX¢,Y _— ¢,VXy = (Vng,)Y .

and therefore N is Sasakian. Now by the Gauss equation we see that Nis a
Sasakian space form with constant ¢-sectional curvature equal to c.

Case (iii). If ¢ =1, M is a real space form and hence its umbilical submani-
folds are space forms of constant curvature 1 + .

4. Letw = G(&, H), and let y be the mean curvature. Then by (3.1)

@.1) X = XG(H, H) = —26(k(c — Dy(X)g4, H) = —}(c — Dagy(X) .
Differentiating « twice we have
@2 Xa = —G(gX, H) — G, X + e — D)) ,

YXo — (P X)a = —a(l + ¢ + 4e — 1) [§-Pg(X, ¥)

+ 1(c — DEYG(PX, &) + 2an(X)p(Y)
+ G@Y, N — (YD) .

Interchanging X and Y and subtracting (¢ # 1) we have
HXG(BY, §4) — n(Y)G(gX, &) + 2G(gX, Y)I&H
— g(NX[EF + gD Y] =0.

Taking X and Y orthogonal to £ we see that for & not tangent to N, G(¢X, Y)
= 0. Y = £¢, and X orthogonal to &° yields

(4.3) 1§ X|§F = (2 — € P)G(@E’, X) .
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On the other hand,

XG(&, &) = 2G(— X — 7 x&1, &) = 2(G(g&%, X) + G(£L, T x&%)
= 2AG($¢*, X) + an(X)) .

Comparing this with (4.3) we have for X orthogonal to &°
2[&° Ggs", X) = (2 — [£°'HG(gE", X)

and hence G(¢&*, X) = 0 or |&°|* = 2/3 which also implies by virtue of (4.3)
that G(¢&?, X) = 0. Therefore, G(¢X, Y) = 0 for all tangent vectors X and ¥,
i.e., N is an anti-invariant submanifold of M.

Now if N has constant mean curvature, then (4.1) gives @ = 0, that is, o(X, Y)
= g(X, Y)H is orthogonal to £ and hence the Weingarten map for the normal
&L vanishes. Therefore I/ y&+ = FL&L, but

Vit =T x(E — &) = —gX — Tx6 — g(X, 69H .
Since ¢X is normal, we see that V&' = 0 and hence g(Ry..&%, X) = 0. Taking
X to be unit and orthogonal to &¢, the Gauss equation yields
0 = G(Ry:t', X) + |6 2
=3(c + D EF + 2c — (&P + [§F ¢,

or assuming £° = 0, in particular assuming VL H = 0,
(4.4) I+ ¢+ 3c—DA =P =0.
Clearly ¢ < 1 and writing (4.4) as

e +3)+ ¢ —3c—DIEF=0,

we see that ¢ + 3 < (¢ — 1) |&F < 0 or ¢ < —3. Moreover I x&* = 0 implies
that the distribution or subbundle on N orthogonal to £ is integrable with to-
tally geodesic leaves giving the foliation of N.

5. First let us continue the analysis of the previous section. Since o = 0,
(4.2) gives G(¢X, H) = 0 for X orthogonal to &', and comparison with (4.4)
yields G(¢&, H) = |&[. Thus if n = m, H and ¢&' must be collinear; so taking

_ ¢¢ we see that H = ¢&%/(1 — [£°]") and
[ 3!
_ 1
VTR

Substituting this into (4.4) we have
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R

Consequently the mean curvature of an umbilical submanifold N™ of type (iv)
of constant mean curvature is determined exactly by ¢. Moreover note that

(5.1) Pogt = &L _gee.
) L — &P

We now review the notion of a C-loxodromic transformation [6]. By a C-
loxodrome we mean a curve y with unit tangent 7, in an almost contact metric
manifold satisfying 7, = ay(r,)érs, @ = constant. Note that such a curve
makes a constant angle with the characteristic vector field &. Since £° has con-
stant length, (5.1) shows that the integral curves of & are C-loxodromes. A
local diffeomorphism f: M — M’ is a C-loxodromic transformation if it maps C-
loxodromes to C-loxodromes. The main result of [6] is that a Sasakian mani-
fold M is locally C-loxodromically equivalent to Euclidean space if and only if
M is a Sasakian space form. In this case the respective connections // and /'’
are related by

PhY =FxY + (XP)Y + (¥p)X — §(c — DOXSY + n(Y)X)

for some function p. In particular, we see that an umbilical submanifold of type
(i) is mapped to an umbilical submanifold of Af.

Now since an umbilical submanifold N™ of type (iv) of M*™*!(¢) admits a
foliation by umbilical submanifolds of type (i) with a normal field & of C-
loxodromes, it is determined by a locus of (m — 1)-spheres and a C-loxodrome
of the appropriate curvature in Euclidean space E?™*1
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