UMBILICAL SUBMANIFOLDS OF SASAKIAN SPACE FORMS

DAVID E. BLAIR & LIEVEN VANHECKE

1. The purpose of this note is to prove the following theorem:

Theorem. Let N^n , $n \ge 3$, be an umbilical submanifold of a Sasakian space form $M^{2n+1}(c)$. If the mean curvature vector is parallel in the normal bundle, then N^n is one of the following:

- (i) N^n is a real space form immersed as an integral submanifold of the contact distribution, and N^n is totally geodesic when n = m.
- (ii) The characteristic vector field of the contact structure is tangent to N^n , N^n is totally geodesic and N^n is a Sasakian space form with the same ϕ -sectional curvature.
- (iii) c = 1 and N^n is a real space form. If the mean curvature vector is not parallel, then
- (iv) N^n is an anti-invariant submanifold, and if N^n has constant mean curvature, then c < -3 and N^n admits a codimension 1 foliation by umbilical submanifolds of type (i).

The four cases of the theorem do occur. In fact, the first three can occur in the odd-dimensional sphere $S^{2m+1}(1)$; for example $S^{2m+1}(1)$ admits a great m-sphere which is an integral submanifold of the usual contact structure [1] and a codimension 2 great sphere such that the characteristic vector field is tangent and the sphere inherits the contact structure of S^{2m+1} . Sasakian submanifolds of Sasakian manifolds have been studied quite extensively; see e.g. [2], [4]. In R^{2m+1} with coordinates (x^i, y^i, z) , the usual contact form $\eta = \frac{1}{2}(dz - \sum y^i dx^i)$ together with the Riemannian metric $G = \eta \otimes \eta + \frac{1}{4} \sum ((dx^i)^2 + (dy^i)^2)$ is a Sasakian structure with constant ϕ -sectional curvature equal to -3. The vector fields $\partial/\partial y^i$ span an integrable distribution whose leaves are integral submanifolds of the contact distribution $\eta = 0$. Moreover these submanifolds are totally geodesic (see e.g. [1]) and G restricted to these submanifolds is just the Euclidean metric. Hence taking an (n-1)-sphere $\sum (y^i)^2 = \text{constant}$ we have an umbilical submanifold in $R^{2m+1}(-3)$. We devote § 5 to an example of type (iv).

2. Let M be a (2m+1)-dimensional contact manifold with contact form η , i.e., $\eta \wedge (d\eta)^m \neq 0$. It is well known that a contact manifold admits a vector field ξ , called the *characteristic vector field*, such that $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$.

Communicated by K. Yano, October 2, 1976.

Moreover M admits a Riemannian metric G and a tensor field ϕ of type (1, 1) such that

$$\phi^2 = -I + \xi \otimes \eta$$
, $G(\phi X, \phi Y) = G(X, Y) - \eta(X)\eta(Y)$,
$$\Phi(X, Y) \stackrel{\text{def}}{==} G(X, \phi Y) = d\eta(X, Y)$$
.

We then say that (ϕ, ξ, η, G) is a contact metric structure.

Let \tilde{V} denote the Riemannian connection of G. Then M is a normal contact metric (Sasakian) manifold if

$$(\tilde{V}_X \phi) Y = G(X, Y) \xi - \eta(Y) X,$$

in which case we have

$$\tilde{V}_{x}\xi = -\phi X$$
.

A plane section of the tangent space T_mM at $m \in M$ is called a ϕ -section if it is spanned by vectors X and ϕX orthogonal to ξ .

The sectional curvature $\tilde{K}(X, \phi X)$ of a ϕ -section is called a ϕ -sectional curvature. A Sasakian manifold is called a Sasakian space form, and denoted M(c) if it has constant ϕ -sectional curvature equal to c; in this case the curvature transformation $\tilde{R}_{XY} = [\tilde{V}_X, \tilde{V}_Y] - \tilde{V}_{[X,Y]}$ is given by

(2.1)
$$\tilde{R}_{XY}Z = \frac{1}{4}(c+3)\{G(Y,Z)X - G(X,Z)Y\} + \frac{1}{4}(c-1)\{\eta(X)\eta(Z)Y\} - \eta(Y)\eta(Z)X + G(X,Z)\eta(Y)\xi - G(Y,Z)\eta(X)\xi + \Phi(Z,Y)\phi X - \Phi(Z,X)\phi Y + 2\Phi(X,Y)\phi Z\}.$$

Let $\iota: N \to M$ be an immersed submanifold, and g the induced metric. The Gauss equation for the induced connection V and the second fundamental form $\sigma(X, Y)$ is

$$\widetilde{V}_{\iota_*X}\iota_*Y = \iota_*V_XY + \sigma(X, Y)$$
.

For simplicity we shall henceforth not distinguish notationally between X and $\iota_* X$. Let R denote the curvature of Γ . Then the Gauss equation for the curvature of N is

$$g(R_{XY}Z,W) = G(\tilde{R}_{XY}Z,W) + G(\sigma(X,W),\sigma(Y,Z)) - G(\sigma(X,Z),\sigma(Y,W)).$$

We denote by V^{\perp} the connection in the normal bundle, and for the second fundamental form σ we define the covariant derivative V with respect to the connection in the (tangent bundle) \oplus (normal bundle), by

$$({}^{\prime}\nabla_{X}\sigma)(Y,Z) = \nabla^{\perp}_{X}(\sigma(Y,Z)) - \sigma(\nabla_{X}Y,Z) - \sigma(Y,\nabla_{X}Z).$$

Finally, the tangential and normal parts of a tensor field will be denoted by the superscripts t and | respectively.

For a contact manifold M it is well known that the (tangent) subbundle D defined by $\eta=0$ admits integral submanifolds up to and including dimension n but of no higher dimension. D is generally referred to as the *contact distribution* of the contact structure η . A more general class of submanifolds than the integral submanifolds of D are those which satisfy $d\eta(X,Y)=0$; these are called anti-invariant submanifolds [3] since ϕ maps the tangent space into the normal space.

3. We now consider an umbilical submanifold N with $n = \dim N \ge 3$ immersed in a Sasakian space form M(c) of dimension 2m + 1. The second fundamental form σ is then given by $\sigma(X, Y) = g(X, Y)H$ where H is the mean curvature vector and the Codazzi equation becomes

$$(\tilde{R}_{XY}Z)^{\perp} = (V_X\sigma)(Y,Z) - (V_Y\sigma)(X,Z) = g(Y,Z)V_X^{\perp}H - g(X,Z)V_Y^{\perp}H.$$

Since $n \ge 3$, for any X tangent to N we can choose a unit tangent vector field Y such that Y is orthogonal to X and ϕX . Then

$$(\tilde{R}_{XY}Y)^{\perp} = V_X^{\perp}H$$
,

but from (2.1)

$$R_{XY}Y = \frac{1}{4}(c+3)X + \frac{1}{4}(c-1)(\eta(X)\eta(Y)Y - \eta(Y)^2X - \eta(X)\xi),$$

and hence

(3.1)
$$\nabla_X^{\perp} H = -\frac{1}{4}(c-1)\eta(X)\xi^{\perp}.$$

Thus if H is parallel in the normal bundle, we have either (i) N is an integral submanifold of the Sasakian space form, (ii) ξ is tangent to N, or (iii) c = 1.

Case (i). From the Gauss equation we see that for an integral submanifold of M(c) and an orthonormal pair $\{X, Y\}$

$$g(R_{XY}Y, X) = \frac{1}{4}(c + 3) + \mu^2$$
,

where μ is the mean curvature, and hence that N is a real space form.

If ζ_1 and ζ_2 are normal vector fields, and A_1 and A_2 the corresponding Weingarten maps, then the equation of Ricci-Kühn is

$$G(\tilde{R}_{XY}\zeta_1,\zeta_2) = G(R_{XY}^{\perp}\zeta_1,\zeta_2) - g([A_1,A_2]X,Y)$$
.

Since N is umbilical, $[A_1, A_2] = 0$ and since $\nabla^{\perp} H = 0$ we have

$$G(\tilde{R}_{XY}H, \phi Y) = 0$$
.

(2.1) then gives

$$G(H, \phi Y)G(\phi X, \phi Y) - G(H, \phi X)G(\phi Y, \phi Y) = 0.$$

Choosing Y orthogonal to X, we have

$$G(H, \phi X) = 0$$
.

Thus either m > n or H is in the direction of ξ . But if N is not totally geodesic, H cannot be in the direction of ξ , for if $\sigma(X, Y) = g(X, Y)\mu\xi$, $\mu \neq 0$, then

$$g(X, Y)\mu = G(\tilde{V}_X Y, \xi) = -G(Y, \tilde{V}_X \xi) = G(Y, \phi X) = 0.$$

Therefore if m = n, N is totally geodesic.

Case (ii). If ξ is tangent to N, $\tilde{V}_{\xi}\xi = 0$ implies $V_{\xi}\xi + H = 0$ and hence H = 0. Now since N is totally geodesic

$$-\phi X = \tilde{\mathcal{V}}_X \xi = \mathcal{V}_X \xi ,$$

that is, ϕX is tangent to N. Setting $\phi' = \phi|_{N}$,

$$\begin{split} g(X, Y)\xi &- \eta(Y)X = (\tilde{\mathcal{V}}_X \phi)Y = \tilde{\mathcal{V}}_X \phi Y - \phi \tilde{\mathcal{V}}_X Y \\ &= \mathcal{V}_X \phi' Y - \phi' \mathcal{V}_X Y = (\mathcal{V}_X \phi') Y \,, \end{split}$$

and therefore N is Sasakian. Now by the Gauss equation we see that N is a Sasakian space form with constant ϕ -sectional curvature equal to c.

Case (iii). If c = 1, M is a real space form and hence its umbilical submanifolds are space forms of constant curvature $1 + \mu^2$.

4. Let $\alpha = G(\xi, H)$, and let μ be the mean curvature. Then by (3.1)

(4.1)
$$X\mu^2 = XG(H, H) = -2G(\frac{1}{4}(c-1)\eta(X)\xi^{\perp}, H) = -\frac{1}{2}(c-1)\alpha\eta(X)$$
.

Differentiating α twice we have

(4.2)
$$X\alpha = -G(\phi X, H) - G(\xi, \mu^{2}X + \frac{1}{4}(c - 1)\eta(X)\xi^{\perp}),$$

$$YX\alpha - (\nabla_{Y}X)\alpha = -\alpha(1 + \mu^{2} + \frac{1}{4}(c - 1)|\xi^{\perp}|^{2})g(X, Y)$$

$$+ \frac{1}{4}(c - 1)(\eta(Y)G(\phi X, \xi^{\perp}) + 2\alpha\eta(X)\eta(Y)$$

$$+ G(\phi Y, X)|\xi^{\perp}|^{2} - \eta(X)Y|\xi^{\perp}|^{2}).$$

Interchanging X and Y and subtracting $(c \neq 1)$ we have

$$\begin{split} \eta(X)G(\phi Y, \xi^{\perp}) &- \eta(Y)G(\phi X, \xi^{\perp}) + 2G(\phi X, Y)|\xi^{\perp}|^2 \\ &- \eta(Y)X|\xi^{\perp}|^2 + \eta(X)Y|\xi^{\perp}|^2 = 0 \; . \end{split}$$

Taking X and Y orthogonal to ξ^t we see that for ξ not tangent to N, $G(\phi X, Y) = 0$. $Y = \xi^t$, and X orthogonal to ξ^t yields

(4.3)
$$|\xi^t|^2 X |\xi^t|^2 = (2 - |\xi^t|^2) G(\phi \xi^t, X) .$$

On the other hand,

$$XG(\xi^{t}, \xi^{t}) = 2G(-\phi X - \tilde{V}_{X}\xi^{\perp}, \xi^{t}) = 2(G(\phi \xi^{t}, X) + G(\xi^{\perp}, \tilde{V}_{X}\xi^{t}))$$
$$= 2(G(\phi \xi^{t}, X) + \alpha \eta(X)).$$

Comparing this with (4.3) we have for X orthogonal to ξ^t

$$2|\xi^t|^2 G(\phi \xi^t, X) = (2 - |\xi^t|^2) G(\phi \xi^t, X)$$

and hence $G(\phi \xi^t, X) = 0$ or $|\xi^t|^2 = 2/3$ which also implies by virtue of (4.3) that $G(\phi \xi^t, X) = 0$. Therefore, $G(\phi X, Y) = 0$ for all tangent vectors X and Y, i.e., N is an anti-invariant submanifold of M.

Now if N has constant mean curvature, then (4.1) gives $\alpha = 0$, that is, $\sigma(X, Y) = g(X, Y)H$ is orthogonal to ξ and hence the Weingarten map for the normal ξ^{\perp} vanishes. Therefore $\tilde{\mathcal{V}}_X \xi^{\perp} = \mathcal{V}_X^{\perp} \xi^{\perp}$, but

$$\tilde{V}_X \xi^{\perp} = \tilde{V}_X (\xi - \xi^t) = -\phi X - V_X \xi^t - g(X, \xi^t) H$$
.

Since ϕX is normal, we see that $\nabla_X \xi^t = 0$ and hence $g(R_{X\xi^t} \xi^t, X) = 0$. Taking X to be unit and orthogonal to ξ^t , the Gauss equation yields

$$0 = G(\tilde{R}_{X\xi^t}\xi^t, X) + |\xi^t|^2 \mu^2$$

= $\frac{1}{4}(c+3)|\xi^t|^2 + \frac{1}{4}(c-1)(-|\xi^t|^4) + |\xi^t|^2 \mu^2$,

or assuming $\xi^t \neq 0$, in particular assuming $V^{\perp}H \neq 0$,

$$(4.4) 1 + \mu^2 + \frac{1}{4}(c-1)(1-|\xi^t|^2) = 0.$$

Clearly c < 1 and writing (4.4) as

$$\frac{1}{4}(c+3) + \mu^2 - \frac{1}{4}(c-1)|\xi^t|^2 = 0$$
,

we see that $c+3 < (c-1)|\xi^t|^2 < 0$ or c < -3. Moreover $V_X \xi^t = 0$ implies that the distribution or subbundle on N orthogonal to ξ^t is integrable with totally geodesic leaves giving the foliation of N.

5. First let us continue the analysis of the previous section. Since $\alpha = 0$, (4.2) gives $G(\phi X, H) = 0$ for X orthogonal to ξ^t , and comparison with (4.4) yields $G(\phi \xi^t, H) = |\xi^t|^2$. Thus if n = m, H and $\phi \xi^t$ must be collinear; so taking the inner product of $\frac{H}{\mu} = \frac{\phi \xi^t}{|\phi \xi^t|}$ with $\phi \xi^t$ we see that $H = \phi \xi^t/(1 - |\xi^t|^2)$ and

$$\mu = \frac{|\xi^t|}{\sqrt{1 - |\xi^t|^2}} \ .$$

Substituting this into (4.4) we have

$$|\xi^t|^2 = 1 - \sqrt{\frac{-4}{c-1}}$$
.

Consequently the mean curvature of an umbilical submanifold N^m of type (iv) of constant mean curvature is determined exactly by c. Moreover note that

(5.1)
$$\tilde{\mathcal{V}}_{\xi i} \xi^t = \frac{|\xi^t|^2}{1 - |\xi^t|^2} \phi \xi^t.$$

We now review the notion of a C-loxodromic transformation [6]. By a C-loxodrome we mean a curve γ with unit tangent γ_* in an almost contact metric manifold satisfying $\tilde{V}_{r*}\gamma_* = a\eta(\gamma_*)\phi\gamma_*$, a= constant. Note that such a curve makes a constant angle with the characteristic vector field ξ . Since ξ^t has constant length, (5.1) shows that the integral curves of ξ^t are C-loxodromes. A local diffeomorphism $f: M \to M'$ is a C-loxodromic transformation if it maps C-loxodromes to C-loxodromes. The main result of [6] is that a Sasakian manifold M is locally C-loxodromically equivalent to Euclidean space if and only if M is a Sasakian space form. In this case the respective connections \tilde{V} and \tilde{V}' are related by

$$\tilde{V}'_X Y = \tilde{V}_X Y + (Xp)Y + (Yp)X - \frac{1}{4}(c-1)(\eta(X)\phi Y + \eta(Y)\phi X)$$

for some function p. In particular, we see that an umbilical submanifold of type (i) is mapped to an umbilical submanifold of M.

Now since an umbilical submanifold N^m of type (iv) of $M^{2m+1}(c)$ admits a foliation by umbilical submanifolds of type (i) with a normal field ξ^t of C-loxodromes, it is determined by a locus of (m-1)-spheres and a C-loxodrome of the appropriate curvature in Euclidean space E^{2m+1} .

References

- [1] D. E. Blair & K. Ogiue, Geometry of integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975) 269-276.
- [2] K. Kenmotsu, On Sasakian immersions, Publ. Study Group of Geometry 4 (1970) 42-59.
- [3] G. D. Ludden, M. Okumura & K. Yano, Anti-invariant submanifolds of almost contact metric manifolds, Math. Ann. 225 (1977) 253-261.
- [4] M. Okumura, On contact metric immersion, Kōdai Math. Sem. Rep. 20 (1968) 389-409.
- [5] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968) 700-717.
- [6] Y. Tashiro & S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep. 15 (1963) 176-183.

MICHIGAN STATE UNIVERSITY
CATHOLIC UNIVERSITY OF LOUVAIN, BELGIUM